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Abstract

A quasi-analytical solution of the conjugated heat transfer problem for a semi-in®nite ¯at plate that is impulsively
accelerated in a compressible laminar ¯ow with Prandtl number equal to 1 is proposed. The solution is based on an
integral formulation both for the momentum and energy equations in the ¯uid and for the thermal coupling
between the ¯uid and the solid. The results are compared to previously obtained exact solutions in the limiting

conditions of `asymptotic' and `steady' ¯ow. The in¯uence on the temperature ®eld of the main parameters
characterizing the problem is discussed. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The subject of the present work is the analysis of the

velocity and temperature ®eld when a semi-in®nite
thick and thermally conductive ¯at plate is impulsively
accelerated in a ¯uid at rest wetting one side of the

plate and a given temperature is suddenly imposed on
the other side. The solution of the energy equation in
an unsteady ¯ow around a body at high speeds is

further complicated if, as in practical cases, neither the
temperature nor the heat ¯ux are known at the solid±
¯uid interface. This problem, called the conjugated
heat transfer, assumes as boundary condition at the

interface the continuity of the temperature and of the
heat transfer. Its solution is still di�cult even if the
assumption of a laminar boundary layer is made

because of the spatial nature of the energy equation in
the solid remains of elliptic type. In fact, only few
results are available in the literature and essentially in

steady regimes. Luikov et al. [1] presented an analytical
but complex solution without numerical results. The
problem was simpli®ed in the case of elongated bodies

by using an expansion in series of the ratio between
normal and axial characteristic lengths of the body,
thus obtaining that the temperature is proportional to

the heat ¯ux at the interface. Mori et al. [2,3] investi-
gated, using the eigen functions technique, the e�ect
on the Nusselt number of the boundary conditions

(constant temperature or constant heat ¯ux) at the
outer wall. Pozzi, Bassano and de Socio [4] found the
solution for the impulsive ¯ow around a ¯at plate of
in®nite length by solving a problem with two indepen-

dent variables, t (time) and y (coordinate normal to
the plate). In the present work a ¯at plate of semi-in®-
nite length is considered together with a ¯uid charac-

terized by a Prandtl number of one. The boundary
conditions at the solid±¯uid interface are similar to
those used for the in®nite plate and are obtained by

neglecting the axial conduction in the solid [4]. A low
accurate simple solution of the same problem was pro-
posed in [5] considers only the coupling condition
without satisfying the energy equation.

In the case of semi-in®nite ¯at plate there are three
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independent variables: t, y and x (the coordinate in the

plate direction). The temperature can be decoupled

from the velocity ®eld by the Stewartson±Dorodnitsin

transformation. However, the phenomenon is still com-

plex due to the presence of the leading edge of the

plate. Three main regions for the temperature ®eld

have been found. In the ®rst one (initial region) the in-

¯uence of the leading edge is prevailing; `very far' from

the leading edge (asymptotic region), the solution

tends to that presented in [4]; these regions are separ-

ated by a transition zone.

The solution has been obtained by applying an inte-

gral formulation of the boundary layer equations that

reduces the number of independent variables by elimi-

nating y. This procedure has already given good results

in the case of steady ¯ow on a ¯at plate with zero

thickness with transport coe�cients either constant or

variable as shown in [6,7]. Preliminary results for the

present case have been proposed in [8].

The ®rst-order hyperbolic equation governing the

problem has been solved in analytical form by the

Lagrange's method. It highlights the physics of the

phenomenon showing the regions that characterize the

problem. The accuracy has been veri®ed by comparing

present results to the `exact' solutions (in the sense

that the 2D boundary layer equations are solved):

unsteady in®nite plate [4] and semi-in®nite plate in

steady ¯ow [9].

In the following, after the description of the physical

problem and solution method, the results will be dis-

Nomenclature

b plate thickness
d0, d1, A constant values
gi coe�cients of the Taylor expansion of

u�

H =h2

Htot total enthalpy

H1 free-stream total enthalpy
h�X,t� scale factor of the dynamic boundary

layer

Jqw heat ¯ux at solid±¯uid interface
L plate length
M1 free-stream Mach number
p = b

L
l1
ls

����������
Re1
p

Pr Prandtl number
qe non-dimensional temperature imposed

on the plate

qi coe�cients of the Taylor expansion of
S+

Re1 Reynolds number

S total enthalpy referenced to the free
stream value

S+ non-dimensional total enthalpy

T temperature
Te temperature imposed on the plate
Taw adiabatic wall temperature in the case

of steady ¯ow and b = 0

T+ non-dimensional temperature (refer-
enced to T1)

t time

tfs ratio between characteristic times of the
¯uid and solid

U1 free-stream velocity

Un Heaviside step function
u, v velocity components

u+ non-dimensional velocity component u
V Stewartson±Dorodnitsin transformation

of normal velocity component v

X non-dimensional spatial coordinate x
x, y spatial coordinates
Z =erf�z�
z non-dimensional scaled spatial coordi-

nate y

Greek symbols
a thermal di�usivity

g ratio of the speci®c heats of the ¯uid
g1 =2=

���
p
p

d =3tfsp
2

z = y
�������
Re1
p
Lh Z Stewartson±Dorodnitsin

transformation of spatial coordinate y
l thermal conductivity
m dynamic viscosity of the ¯uid

n cinematic viscosity of the ¯uid
x non-dimensional independent variable

of the energy equation in the steady

region
t non-dimensional time

Subscripts
f ¯uid property

ref reference condition
s solid property
x, y, t, X,

Z, Z, t
specify partial derivation respect to the

corresponding variable
w solid±¯uid interface condition
Z,0 partial derivative with respect to Z eval-

uated at Z = 0
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cussed by analysing the behaviour of quantities of par-
ticular interest, such as the temperature and the heat

¯ux at the solid±¯uid interface. Moreover the e�ect of
the main parameters characterizing the phenomenon
(ratio between conductivities of the ¯uid and of the

solid, Reynolds and Mach numbers, ratio between
plate thickness and length) will be shown.

2. The physical and the mathematical problem

The geometry of the ¯ow is sketched in Fig. 1. The
semi-in®nite, two-dimensional ¯at plate whose thick-

ness is b, at the initial time t = 0 is impulsively accel-
erated to a constant speed U1 in a ¯uid with unit
Prandtl number (Pr ). The initial temperature ®eld is

uniform in both the ¯uid and the solid and is
T�x,y,0ÿ� � T1 where the subscript 1 denotes free-
stream conditions. For t> 0 a constant temperature
Te is impulsively imposed on the unwetted plate side.

We consider here a compressible laminar boundary
layer arising near the plate. The ¯ow equations can be
simpli®ed by adopting the Stewartson±Dorodnitsin

transformation:

Z �
� y

0

r
r1

dy, V � r
r1

v� Zt � uZx, �1�

with u and v the velocity components. This transform-
ation allows the continuity and momentum equation
to be decoupled from the energy equation in the hy-

pothesis r
r1
� m1

m � l1
l � T1

T , where r, m, l are respect-
ively the density, viscosity and conductivity of the
¯uid. With these assumptions the ¯ow equations have

the form

ux � VZ � 0;

ut � uux � VuZ � n1uZZ;

St � uSx � VSZ � a1SZZ; �2�

where S � Htot ÿH1 is the total enthalpy referenced

to the free stream value and n1, a1 denote the di�u-
sivities in the ¯uid. Moreover, the energy equation in

the solid is

Ts,t � as

ÿ
Ts,xx � Ts,yy

�
, �3�

where Ts is the temperature in the solid and as its dif-
fusivity.

The boundary conditions we associate with Eqs. (2)
and (3) are:

. (a) boundary conditions for the ¯uid ®eld,

u
ÿ
x,1,t�

�
� U1; S�x,1,t� � 0;

u�x,0,t� � V�x,0,t� � 0;

u�x,y,0ÿ� � 0; T�x,y,0� � T1; �4�
. (b) boundary conditions for the solid ®eld,

T�x,y,0ÿ� � T1, �5a�

T
ÿ
x,ÿ b,t�

�
� Te; �5b�

. (c) thermal boundary conditions at the solid±¯uid

interface,

Ts�x,0,t� � Tf �x,0,t�;

lsTs,y�x,0,t� � lfTf,y�x,0,t�; �6�

where subscripts s and f denote respectively solid
and ¯uid properties.

3. The solution method

The solution method [7] reduces from three to two
the number of the independent variables by integration
of the Eq. (2), with respect to y, between 0 and 1 and
uses the Taylor formula in terms of a new variable

Z�Z�: With a suitable approximated expression of the
remainder, the Taylor formula gives:

u��X,Z,t� � Z n �
Xnÿ1
i�1

gi�X,t��Z i ÿ Z n �, �7a�

S��X,Z,t� �
Xnÿ1
i�0

qi�X,t��Z i ÿ Z n �, �7b�

where u� � u
U1

, S� � S
H1

, Z�z� � erf�z�, (erf denotes

the error function), z � Z
�������
Re1
p

Lh�X,t� , X � x
L , t � tL

U1
, L is a

reference length andFig. 1. The geometry of the problem.
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gi�X,t� � 1

i!

@u�

@Z i
�X,0,t�,

qi�X,t� � 1

i!

@S�

@Z i
�X,0,t�: �8�

h�X,t� is an unknown scale factor that is determined
by the solution of the integral momentum equation. q0
and q1 are related to the unknown temperature and
heat ¯ux distributions on the plate wall since q0 �
S�w � T �w � Tw=T1 and q1 � S�Zw � �T=Taw�Z,0 with

Taw � T1�1� gÿ1
2 M2

1�, where M1 is the free-stream
Mach number and Taw is the adiabatic wall tempera-
ture in the case of a steady ¯ow over a plate of in®-

nitely small thickness. Finally, the integral formulation
of the momentum and energy balance provides the fol-
lowing equations

@

@t

�
h

�1
0

�1ÿ u��dz
�
� @

@X

�
h

�1
0

u��1ÿ u��dz
�

� 1

h
u�z,0; �9a�

@

@t

�
h

�1
0

S�dz

�
� @

@X

�
h

�1
0

u�S�dz

�
� ÿ1

h
S�z,0: �9b�

(We observe that the use of the Taylor's formula
instead of a series expansion enables one, by means of
a suitable remainder evaluation, to also obtain a good

approximation for functions that cannot be expanded
in series.)
To complete the model description we need to take

into account the energy equation in the solid (3) and
formulate the thermal coupling conditions in order to
obtain a problem only in terms of unknowns of the

¯uid ®eld.

4. Coupling of the temperature ®eld between solid and

¯uid

An integral modelling of the conductive phenomena
in the solid plate has been proposed in [4] for b=L < 1:
In this case the heat Eq. (3), by neglecting terms of

order � b
L �2, reduces to

Ts,yy � 0: �10�

Eq. (10) admits the solution

Ts � Tsw � �Tsw ÿ Te �y
b
: �11�

The Eqs. (10) and (11) and the boundary conditions
(6) together with the integral formulation of the heat
equation in the solid

1

as

@

@ t

�0
ÿb

yTs dy � bTsw,y ÿ Tsw � Te �12�

provide the required coupling condition of the tem-
perature ®eld between ¯uid and solid only in terms of

the temperature of the ¯uid and its derivatives:

Tw,t � 3tfs

�
b
l1
ls

Tw,Z�X,t� � Te

�
, �13�

where tfs� L
U1

as

b2
is the ratio between the characteristic

times of the ¯uid and of the solid. This relation

replaces the boundary conditions (5b) and (6).
Therefore we can solve the problem only in the ¯uid
®eld by solving Eq. (2) with the boundary conditions
(4), (5a) and (13).

5. The ®rst-order solution

5.1. Momentum equation

A ®rst order approximation is obtained by using n
= 1 in Eq. (7a) and adopting u� � Z�z� in the integral

momentum Eq. (9a) [6,7]. Its integration provides the
scale factor of the dynamic boundary layer:

H�X,t� � h2�X,t� � 4tÿ 8

�
t
2
ÿ X

�
Un

�
t
2
ÿ X

�
, �14�

with Un the Heaviside step function.

In the ®rst-order approximation the dynamic bound-
ary layer is characterized by two regions (see Fig. 2)
separated by the characteristic line X � t=2: For X >
t=2 �h � 2

���
t
p � it only depends on time (asymptotic

Fig. 2. Characteristic curves in the (X,t� plane. M1 �
3,p � 1,tfs�1=3,qe�ÿ0:25: I: asymptotic region. II: transition

region. III: steady equation region. Continuous line: charac-

teristic curve for the velocity equation. Dotted line: character-

istic curve for the energy equation in region I. Dashed line:

characteristic curve for the energy equation in region III.
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region); it is not in¯uenced by the leading edge and
describes a Rayleigh-type ¯ow. For X < t=2 �h � ������

8X
p �

the velocity ®eld is only depending on X (steady
region) and represents a Blasius-type ¯ow.
This solution will be used in the present work. H is

continuous in the complete �X,t� plane while its deriva-
tive normal to the characteristic line starting from the
origin is discontinuous. However this discontinuity can

be eliminated by the higher order approximations. The
third order one, for instance, is obtained by using n =
3 in Eq. (7a) and adopting u� � Z 3 � g1�Zÿ Z 3� (for
details see Ref. [10]). In this case the derivative of H is
continuous and the results (see Fig. 1 of Ref. [10]) are
in excellent agreement with the numerical solution pro-
posed in [11].

5.2. Energy equation

A ®rst order approximation of S� is similarly
obtained by adopting Eq. (7b) with n = 1. Then the
energy Eq. (9b) and the thermal boundary condition

(13) can be written in terms of the unknowns q0 and
q1 in the following form:

2H�d0q0t � d1q0X � � Aq0 � ÿ2g1q1; �15a�

q0t�X,t� � 3g1
tfsp

h�X,t�q1�X,t� � 3tfs
�
qe ÿ q0�X,t�

�
; �15b�

with d0, d1 and A are constants given by

d0 �
�1
0

�1ÿ Z�dz � 1

p
, d1 �

�1
0

Z�1ÿ Z�dz

�
����
2

p

r
ÿ d0, A � Htd0 �HXd1; �16�

while g1 � Z 0�0� � 2��
p
p , qe � cpTe

H1
ÿ 1 and

p � b
L
l1
ls

����������
Re1
p

:
By eliminating q1 from Eq. (15) we get the ®rst-

order hyperbolic equation describing the thermal coup-
ling phenomenon evolution in the �X,t� plane:�
d0 � 1

3tfsph

�
q0t � d1q0X � 1

ph
�qe ÿ q0 � ÿ A

2H
: �17�

We associate with this ®rst order linear equation two
boundary conditions on the X and t axis. In particular,
from the last condition in Eq. (4) we have T�X,0,0� �
T1 and therefore at the interface q0�X,0� � S�w �X � �
ÿ�gÿ 1�M2

1=�2� �gÿ 1�M2
1� with g the ratio between

the speci®c heats. By denoting this quantity with q01
the condition on the X-axis results in

q0�X,0� � q01: �18�
The boundary condition on the t-axis follows from

Eq. (6), i.e. from the continuity of the temperature and
heat ¯ux at the interface applied for X = 0. The heat

¯ux in the solid body is given by �Tw ÿ Te�=b and
therefore is a ®nite quantity; on the other side it is pro-
portional to q1=h�X � and hence, because h�0� � 0, it

follows q1�0,t� � 0: Moreover, assuming T�0,t� ®nite
and from Eq. (15a) (the energy equation in the ¯uid
evaluated at X = 0, with h�0� � 0� we have

q0�0,t� � 0, �19�
which is the required boundary condition on t: We
note that this condition leads to Tw�0,t� � Taw:
The Eq. (17) can be analytically solved by using the

Lagrange's method (see Appendix A). For the energy
®eld three main regions have been found.

5.2.1. X > t=2, asymptotic region

q0�X,t� � q01q0a�t� � q0p�t�, �20�

with

q0a�t� �
 
6d0tfsp

2

������
t
p2

r
� 1

!ÿa
exp

 
ÿ1
d0

������
t
p2

r !
;

q0p�t� � qeq0a�t�3tfsp2
� t
p2

0

0@6tfsp2d0
������
�t
p2

s
� 1

1A�aÿ1�

exp

0@ 1

d0

������
�t
p2

s 1Ad�t
p2

; �21�

where a � 1ÿ 1=�6tfsp2d 2
0�: This solution can also be

directly obtained by solving the ®rst-order ordinary
equation obtained by neglecting the spatial derivative
in Eq. (17). The region has been denoted by I in
Fig. 2.

5.2.2. Steady region
This region (III in Fig. 2) is identi®ed by t > f�X �,

where the curve t � f�X � is the characteristic curve of
the energy equation

t � d0
d1

X� 1

3
���
2
p

tfsp

����
X
p
� f�X�: �22�

The solution is here

q0�X,t� � Q0�x� � qe

�
1ÿ 1

x

�
1ÿ exp� ÿ x���;

x � 1���
2
p

d1

������
X

p2

s
: �23�
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Similarly to the asymptotic region, this integral can be
directly obtained by solving Eq. (17) with q0t � 0:

5.2.3. t < f�X �, transition region
The solution (II in Fig. 2) is given by the equation

q0�X,t� ÿQ0�X�
Q0a�X� � F

�
tÿ f�X��, �24�

with

Q0a�X� �
�
X

p2

�ÿ1=2
exp

0@ÿ 1���
2
p

d1

������
X

p2

s 1A: �25�

The function F�tÿ f�x�� is given by

F
�
tÿ f�X�� � F�s�

� q0
�
c�s�=2,c�s��ÿQ0

�
c�s�=2�

Q0a

�
c�s�=2� , �26�

with

c�s� �

0@k1 �
��������������������
k21 � 2k2s

q
k2

1A2

;

k1 � 1

6tfspd1
; k2 � 2d1 ÿ d0

d1
: �27�

In Figs. 3 and 4 the present solution is compared to

the `exact' ones [4,9] and to the preliminary lower
order results [5] obtained in the asymptotic and steady
regions for the energy. The temperature on the wall is

directly connected to q0 and is given by

T �w � �q0 � 1�
�
1� gÿ 1

2
M2
1

�
: �28�

The results are good, the improved accuracy of the
®rst-order solution is shown especially in the asympto-
tic region and in the steady region for larger values

of X.
As anticipated in the introduction the main progress

of the present work is given by the determination of a

solution in the complete plane �X,t� that, on the con-
trary of [5] exactly satis®es an integral formulation of
the energy equation and not only the coupling con-
dition (15b). In Fig. 5 an example is shown; the tem-

perature on the plate is plotted versus X for di�erent
values of time.

Fig. 3. T �w versus t in the asymptotic region. M1 � 3, p � 1,

tfs � 1=3, qe � ÿ0:25: Symbols: `exact' solution; continuous

line: present solution; dashed line: 0-order solution.

Fig. 4. T �w versus X in the steady region. M1�3, p � 1, tfs�
1=3, qe � ÿ0:25: Symbols: `exact' solution; continuous line:

present solution; dashed line: 0-order solution.

Fig. 5. T �w versus X. t � 1, 2, 3, 4, 5. M1 � 3, p = 1, tfs=1/

3, qe = ÿ0.25.

A. Pozzi, R. Tognaccini / Int. J. Heat Mass Transfer 43 (2000) 1121±11311126



6. The local solution in the origin

It is very interesting to analyse the behaviour of the
solution in the neighbourood of the origin of the �X,t�
plane since the solution is singular in (0, 0). In fact

from the asymptotic solution it is

lim
X,t4 0

q0�X,t� � q01, �29�

while in the steady region we have

lim
X,t4 0

q0�X,t� � lim
X4 0

Q0�X� � 0: �30�

For small values of t the solution in the asymptotic
region can be further simpli®ed if the terms greater
than O(t� are neglected thus obtaining

q0�t� � q0a�t��q01 � qeq0l�t��,

q0l�t� � 6tfsp
2d 2

0

24exp

 
1

d0

������
t
p2

r !
 
3

d0

������
t
p2

r
ÿ 1

d 2
0

t
p2
ÿ 3

!
� 3

35: �31�

In a similar way, neglecting terms greater than O(x),
the solution in the steady region is approximated by

q0�X� � 1

2
���
2
p

d1

������
X

p2

s
: �32�

The local solution is compared to the complete one in
Fig. 6 showing the good accuracy for small values of
X and t:

7. Analysis of the results

Together with the M1 two non-dimensional groups
completely characterize the phenomenon. They are p
(related to the geometry, the ratio of the thermal con-

ductivities and the Reynolds number) and tfs which is
the ratio between the characteristic times of the ¯uid
and of the solid.

The heat ¯ux at the solid±¯uid interface is given by

Jqw � ÿlfwTw,y � ÿl1 g1TZ,0

����������
Re1
p

Lh
�33�

and it is directly connected with q1 since TZ,0�S�Z,0Taw

�q1Taw:

7.1. Asymptotic region

It is interesting to note that the solution only
depends on the independent variable t=p2, on the par-

ameters qe and on

d � 3tfsp
2 � 3

1

Pr

l1
ls

r1
rs

cpf

cs

, �34�

where cpf and cs are respectively the speci®c heat of
the ¯uid at constant pressure and the speci®c heat of
the solid. In Fig. 7, Tw=Taw is plotted versus t=p2 for

di�erent values of d and a speci®ed qe: The peak tem-
perature value only depends on d and not on the plate
thickness while the asymptotic temperature is Te: The
plate thickness (present in the parameter p but not in
d� only a�ects the times at which the peak and the
asymptotic values are reached. �T=Taw�Z,0 at the solid±
¯uid interface is plotted in Fig. 8 for the same values

of d and qe: It is ®nite for t=p2 � 0 and again the mini-
mum value only depends on d and qe: The limiting
behaviours of the wall temperature for t40� and

t41 are:

Fig. 6. T �w versus X; comparison between local and global

solution. M1 � 3, p = 1, tfs � 1=3, qe � ÿ0:25: Continuous
line: complete solution; dashed line: local solution. t � 0:2,
0.4, 0.6. Fig. 7. Tw=Taw versus t=p2: d � 0:01, 0.1, 1, 10.
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t40�:
Tw

Taw

41� q01

 
1ÿ 2dd0

������
t
p2

r !
,

t41:
Tw

Taw

4
Te

Taw

�
���
2
p

d0������
t
p2

r �
1ÿ Te

Taw

�
; �35�

while the heat ¯uxes are:

t40�:
�
Tw

Taw

�
Z,0

4 ÿ q01

 
1ÿ 4���

p
p d

������
t
p2

r !
,

t41:

�
Tw

Taw

�
Z,0

4 ÿ qe: �36�

These behaviours are in perfect agreement with the

exact solution [4]. In particular, we recover the result
that, for very small values of time, the solution is inde-
pendent of the temperature Te imposed on the

unwetted plate side (the in¯uence of Te appears with
the terms O�t=p2�). We note that, while the tempera-
ture is continuous, for t � 0 the heat ¯ux TZ,0=h is in®-

nite. The asymptotic behaviour �t=p241� also
describes the solution in the case of a plate of in®nitely
small thickness �b � 0). In this case the temperature
and the heat ¯ux on the wall impulsively assume the

asymptotic constant values.

7.2. Steady region for the energy equation

In this region (identi®ed with III in Fig. 2) the sol-

ution only depends on the independent variable X=p2

and on the parameter qe: Again p does not in¯uence
the values of the temperature at heat ¯ux at the wall

but only the spatial coordinate at which the values are
obtained. In Fig. 9, Tw=Taw and �T=Taw�Z,0 are plotted
against X=p2:

The limiting behaviours of the temperature are the

following:

X40�:
Tw

Taw

41� qe

���
2
p

4d1

������
X

p2

s
,

X41:
Tw

Taw

41� qe

0B@1ÿ
���
2
p

d1������
X

p2

r 1CA; �37�

while for the heat ¯ux:

X40�:
�
Tw

Taw

�
Z,0

4 ÿ qe2
���
2
p

������
X

p2

s
, �38a�

X41:

�
Tw

Taw

�
Z,0

4 ÿ 4
d1
g1
qe: �38b�

Due to the boundary condition (19) we have Tw � Taw

at the plate leading edge while for X41 is: Tw4Te:
The heat ¯ux TZ,0=h is ®nite at the leading edge while
tends to 0 with the law 1/h for large values of X.
It is interesting to compare present results to the

limiting solution relative to a steady ¯ow over a ¯at

plate of in®nitely small thickness �b � 0,Tw � Te):

S��X,z� � qe�1ÿ u��, �39a�

S�Z,0 �
�
Tw

Taw

�
Z,0

� ÿ4d1
g1
qe: �39b�

For X41 this solution is equal to the Eq. (38b);
on the contrary the ®nite thickness of plate strongly

modi®es the solution near the leading edge. In particu-
lar, the heat ¯ux reduces from an in®nite value to a
®nite one at the plate apex:

Fig. 8. �T=Taw�Z,0 versus t=p2: d � 0:01, 0.1, 1, 10. Fig. 9. Tw=Taw and �T=Taw�Z,0 versus X=p2:
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TwZ,0ÿ
TwZ,0

�
ref

� 1ÿ exp

0@ 1���
2
p

d1

������
X

p2

s 1A, �40�

where �TZ,0�ref is given by Eq. (39b).

7.3. Temperature and velocity pro®les

We present here some results for a practical problem
in which a metal plate characterized by b/L = 0.01 is

accelerated in a high-speed air ¯ow. The value of Te is
lower than the adiabatic temperature (for steady ¯ow)
so the ¯uid is heating the plate.

Due to the small value of tfs a su�cient extension of
the steady region for the energy equation is only
reached for large values of t:
The integral boundary layer equations have been

obtained by a ®rst order description of the velocity
and temperature pro®les (n = 1 in Eq. (7b)). However,
more accurate pro®les can be derived since the coef-

®cients qi for i > 1 can be determined in terms of
�q0,q1� by using the energy Eq. (2c) evaluated at the
wall. In particular, we also computed q2 by the re-

lation

q2 � H�X,t�
2g21

q0t�X,t�, �41�

obtaining a third-order description of the temperature

pro®les:

S��X,Z,t� � q0�X,t��1ÿ Z 3 � � q1�X,t��Zÿ Z 3 �

� q2�X,t��Z 2 ÿ Z 3 �,

T ��X,Z,t� � Taw

T1

�
1� S��X,Z,t��

ÿgÿ 1

2
M2
1Z

2 �42�

Some temperature distributions in the ¯uid for di�er-
ent Mach numbers are shown in Fig. 10. In this
example the solution is still in the transition region.

Fig. 11 shows the di�erence between the temperature
pro®les when plotted against the physical and the
Stewartson±Dorodnitsin normal coordinate to the

wall. Finally by present solution it is possible to show
the time evolution of the thermal (Fig. 12) and of the
velocity (Fig. 13) ®elds. The values t � 10, 1000,

10,000 characterize respectively an early transition,
transition and steady region for the energy.

8. Conclusions

We have here presented an analysis of the thermo-

Fig. 10. T � versus z � y
�������
Re1
p
Lh : p = 0.0329, tfs � 0:000933,

qe � ÿ0:522, X = 0.01, t � 1000: Continuous line: M1 � 3;

dotted line: M1 � 2; dashed line: M1 � 1:

Fig. 11. T � versus z � y
�������
Re1
p
Lh (continuous line) and z (dashed

line). M1 � 3, p = 0.0329, tfs � 0:000933, qe � ÿ0:522,
p = 0.0329, tfs � 0:000933, qe � ÿ0:522, X = 0.01, t � 1000:

Fig. 12. T � versus z � y
�������
Re1
p
Lh : M1 � 3, p = 0.0329,

tfs � 0:000933, qe � ÿ0:522, X = 0.01. Dotted line: t = 10;

continuous line: t = 1000; dashed line: t = 10,000.
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¯uid dynamic ®eld arising above a semi-in®nite ¯at

plate that is impulsively accelerated in a compressible

laminar ¯ow taking also into account the e�ect of the

®nite thickness of the solid plate and of its thermal

conductivity. We used an integral formulation for the

boundary layer and for the solid±¯uid thermal coup-

ling. The equations have been integrated in a quasi-

analytical form by the Lagrange's method.

There are many reasons making this study useful.

Despite of the simplicity of the geometry this problem

is still complex as also demonstrated by the lack of

results in literature. A ®rst di�culty arises from the

three-dimensional nature of the problem (the variables

are x, y, t ). Moreover, the problem is complicated by

the presence of the singularity in the origin of the

plane �X,t). This singularity does not enable to easily

®nd a numerical solution (for example, by the method

of the characteristic) because the usual interpolations

formulae are critical to apply near the singularity.

Present analytical results allowed to understand the

main features of the phenomenon. Three regions have

been identi®ed: they are characterized by strong di�er-

ent behaviours. In particular, there is an asymptotic

region for the velocity and energy ®eld in which the

¯ow is depending only on time, it is of Rayleigh-type

and not in¯uenced by the plate leading edge. For large

values of time (or equivalently very near the leading

edge) the solution is depending only on X. Finally a

transition region for the energy is present, in which the

¯ow depends both on time and space.

The results have been compared to `exact' solutions

that hold for the limiting conditions of asymptotic

¯ow (no leading edge in¯uence) and steady ¯ow show-

ing good accuracy.

The non-dimensional parameters governing the

regimes have been determined and their in¯uence is

easily shown by the simple analytical relations.

Finally the presence of a singularity of the solution

in the origin of the �X,t� plane makes this reference
solution meaningful to attempt for a numerical sol-

ution of the problem in more complex geometries.
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Appendix. The Lagrange's method

Given the quasi linear ®rst order equation

a1qx�x,t� � a2qt�x,t� � a3 �A1�
where ai � ai�x,t,q�, we obtain a well de®ned problem

if q�x c�s�,tc�s�� � �q�s� is known on a non-characteristic
curve c de®ned by the parametric equations x c�s�, tc�s�:
It is possible to derive the solution of this problem in

its existence domain by applying the Lagrange's
method. It consists in determining two independent
solutions, in the form

f�x,t,q� � c1, g�x,t,q� � c2, �A2�

of the characteristic system

dx

a1
� dt

a2
� dq

a3
: �A3�

Finally the general solution of the Eq. (A1) can be

written in the form g = G( f ) or f = F( g ) where the
function G or F can be determined by imposing the
boundary condition on the curve c.
For the Eq. (17) we have q � q0,a1 � d1,a2 � d0 �

1=�3tfsph�,a3 � �qe ÿ q0�=�ph� ÿ A=�2H � and, obviously,
x = X, t � t:
In the asymptotic region �X > t=2,h � h�t�� we solve

the characteristic system

dX

dt
� a1

a2
,

dq0
dt
� a3

a2
: �A4�

The solution of the ®rst equation � f �X,t,q0� � c1� pro-
vides the family of the characteristic curves:

Xÿ d1
d0

t� 1

3tfsp
d1d

2
0

���
t
p

ÿ d1

2�3tfsp�2d 3
0

log

0BBB@
2
���
t
p � 1

3tfspd0
1

3tfspd0

1CCCA
� Xÿ s�t� � c1, �A5�

while from the second one we obtain g�X,t,q0�:

Fig. 13. u� versus z � y
�������
Re1
p
Lh : M1=3, p = 0.0329,

tfs � 0:000933, qe � ÿ0:522, X = 0.01. Dotted line: t = 10;

continuous line: t = 1000; dashed line: t = 10,000.
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q0 ÿ q0p

q0a
� c2 �A6�

where q0p and q0a are given by relations (21).
Hence the general solution of Eq. (17) in the asymp-

totic region is:

q0 ÿ q0p
q0a

� F
�
Xÿ s�t��: �A7�

The function F is determined by imposing the bound-
ary condition q0�X,0� � q01 obtaining

F
�
Xÿ s�t�� � const � q01 �A8�

and the relation (20) is recovered. For X < t=2, the

characteristic system is:

dX

dt
� a1

a2
,

dq0
dt
� a3

a1
: �A9�

Following the same steps of the previous case f �X,t,q0�
is:

tÿ f�X� � c1, �A10�
where f�X � is given by Eq. (22).

g�X,t,q0� is given by

q0 ÿQ0

Q0a
� c2, �A11�

where Q0 and Q0a are given in Eqs. (23) and (25).The

general integral can be written as

q0 ÿQ0

Q0a
� F

�
tÿ f�X�� � f1�s� � f2�s�: �A12�

f1�s� is again obtained by imposing the boundary con-
dition �q0�0,t� � 0� and is f1�s� � 0: f2�s� � F�s� is

determined by imposing the continuity of q0 across the
line X � t=2 and it is given by relations (26) and (27).
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